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Tensor operators and projection techniques in infinite 
dimensional representations of semi-simple Lie algebras 

M D Gould 
Department of Mathematical Physics, University of Adelaide, GPO Box 498, Adelaide, 
South Australia 5001 

Received 5 November 1982, in final form 13 July 1983 

Abstract. Polynomial identities satisfied by the infinitesimal generators of a semi-simple 
Lie group are employed to construct projection operators which project a tensor product 
representation V(A)@ V ( V(A) finite dimensional and irreducible, V an infinite 
dimensional representation admitting an infinitesimal character) onto a primary sub- 
representation. Such projection operators project out the generalised shift components of 
a tensor operator acting on an infinite dimensional representation V in direct analogy with 
the finite dimensional analysis of Bracken and Green (1971). Applications of these methods 
to evaluating the matrix elements of the generators of the locally compact groups U(p, q )  
and O(p, q )  in unitary (discrete).irreducible representations are discussed. 

1. Introduction 

Characteristic identities satisfied by the infinitesimal generators of a semi-simple Lie 
group have been studied by a number of authors (see Gould (1982) and references 
quoted therein). Such identities have been shown to be a powerful tool for the analysis 
of finite dimensional representations of the group. The work of Bracken and Green 
(1971) and Green (1971) demonstrates how such identities may be used to construct 
projection operators which may be applied to a systematic analysis of vector operators 
on finite dimensional representations of the group. In fact it was recognised early by 
Fano (1962) (see also Baird and Biedenharn 1964), at least for the lower order unitary 
groups, that polynomial identities satisfied by the infinitesimal generators of the unitary 
groups were useful, particularly for the task of discussing generalised Wigner and 
Racah coefficients. This idea of Fano’s was extended in Gould (1980,1981) using the 
techniques of Bracken and Green (1971) and Green (1971) to obtain raising and 
lowering operators and the fundamental Wigner coefficients for the Lie groups O( n )  
and U( n ) .  Moreover, extensions of this technique to arbitrary semi-simple (compact) 
Lie Groups were given. More recently the techniques of Bracken and Green have 
been extended to give a solution to the Clebsch-Gordan multiplicity problem (Edwards 
and Gould 1982) and the equivalent problem of labelling all tensor operators (in finite 
dimensional representations) for a semi-simple Lie algebra. 

It is the aim of this paper to extend the techniques of Bracken and Green (1971) 
and Green (1971) to infinite dimensional representations of a semi-simple Lie algebra. 
It has been shown (see Gould 1982 and Kostant 1975) that the characteristic identities 
for semi-simple Lie algebras also hold in infinite dimensional representations. Using 
these identities it be shown that on an arbitrary representation admitting an infinitesimal 
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character (herein called characteristic representations) one may construct projection 
operators analogous to the projection operators of Green (1971) and Bracken and 
Green ( 1971) in finite dimensions, However, in infinite dimensional representations, 
the projection operators take a more complicated form due to the fact that one does 
not have complete reducibility in infinite dimensions. These projection operators may 
then be applied, as in the finite dimensional case, to project out the shift components 
of a tensor operator acting on an infinite dimensional characteristic representation. 
However, since infinite dimensional (characteristic) representations need not possess 
maximal (or minimal) weights care must be taken in interpreting the nature of a shift 
tensor operator. To this end we aim to set up the framework for discussion of tensor 
operators and their shift components on infinite dimensional characteristic representa- 
tions. 

Our work is directly related to the nature of the tensor product space V ( h ) O  V 
where V(A) is a finite dimensional irreducible representation and V is an infinite 
dimensional characteristic representation. This includes the cases where V is a Verma 
module, which has been treated by Bernstein et a1 1971 (see also Dixmier 1977), and 
the more general case where V is a Harish-Chandra module which has been treated 
by Kostant (1975), Zuckerman (1977) and Klimyk (1977) (see also references quoted 
therein). The projection operators of this paper are in fact an explicit construction of 
the projection functors appearing implicitly in the work of Zuckerman (1977). Such 
projection operators project the tensor product space V ( h ) O  V onto a primary 
sub-representation. 

Such considerations are important for an analysis of tensor operators on unitary 
representations of locally compact groups such as O(p, q )  and U(p, 4). This includes 
the important problem of finding the matrix elements of the group generators in the 
discrete series of unitary representations. Our work demonstrates that such an analysis 
is possible in direct analogy with the finite diInensiona1 case. 

Finally we remark that our methods also apply to the classical Lie super-algebras. 
It has been demonstrated by Jarvis and Green (1979) that the characteristic identities 
hold also for the finite dimensional representations of the Lie super-algebras. For this 
case, as in the infinite dimensional analysis of this paper, one does not have complete 
reducibility for the finite dimensional representations. However, the methods of this 
paper may also be applied to construct projection operators which may be used to 
project out generalised shift components (generalised in a sense to be discussed in this 
paper) of tensor operators. In particular this opens up the possibility of a complete 
determination of the matrix elements of the Lie super-algebra generators, in finite 
dimensional irreducible representations, along the lines suggested in Gould 
(1980,1981) 

2. Fundamentals 

Our notation follows that of Humphreys (1972) and Gould (1982). Let L be a complex 
semi-simple Lie algebra of rank I ,  let U be the universal enveloping algebra of L, and 
let 2 be the centre of U. Select a Cartan sub-algebra H of L, with dual space H*, 
and let 0 denote the set of roots of L relative to H. Let 0+ denote the system of 
positive roots and take S to be half the sum of the positive roots. Finally let A + c  H* 
be the set of dominant integral linear functions on H and let W (resp. W) denote the 
Weyl group (resp. translated Weyl group). 
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We define an infinitesimal character x as an algebra homomorphism of Z into the 
scalars @. If zl,. . . , zI E Z are algebraically independent, then a character is uniquely 
determined by the scalars ~ ( z , )  which may be arbitrary complex numbers. 

If M is a representation of the Lie algebra L then M also gives a representation 
of the universal enveloping algebra which is a (Noetherian) associative algebra. Hence, 
we adopt the language of Ring Theory, and refer to a representation of the Lie algebra 
L as a module over U. 

We say that a module M over U admits an infinitesimal character if the elements 
of the centre Z take constant values on M. Such a module determines an algebra 
homorphism 

x & f : Z + @ ,  + X M  (2) 9 

where x M ( z )  is the eigenvalue of the central element z on M. In such a case we say 
that M admits the infinitesimal character xM. If uo is a maximal weight vector of 
weight A E H* then uo determines an algebra homomorphism 

X A  : z*@ 
where xA(z) is the eigenvalue of z E Z on uo. The characters xA play a fundamental 
role in character analysis since it is a theorem of Harish-Chandra (see Humphreys 
1972) that every infinitesimal character x over 2 is of the form x = xA for some A E H*. 

If M is a U-module admitting an infinitesimal character xA,  A EH*, let us agree 
to call M a characteristic module and refer to xA as the characteristic of the module M. 

It is important to note, however, that the infinitesimal character xA does not 
characterise the weight A uniquely. One in fact has the following result due to 
Harish-Chandra. 

Theorem. xh = x ,  i f  and only if A and p are *-conjugate: i.e. A = w(p +a)-  S for 
some W E  W. 

We now introduce the concept of a primary module. Before proceeding we establish 
some notation. 

It is a well known result due to Harish-Chandra that the centre 2 of U is generated 
as an algebra by I algebraically independent invariants zl, . . . , z/. In polynomial algebra 
notation we write 

Z = @ [ z , ,  . . . , z/3. 

Now associated with each infinitesimal character xA : Z +  @, A E H*, is its kernel I,+ 
which is a maximal ideal of Z of co-dimension 1.  It is easily shown that I A  is generated 
as an ideal by the central elements z, -xA  (2,) ( i  = 1,  . . . , I ) ,  i.e. 

/ 

I A  = z ( z ~ - x A ( z , ) ) .  
, = I  

Let us denote the /-dimensional vector space spanned by the z, - x A (  z , )  ( i  = 1,  . . . , I )  
by NA. With this convention we may write 

I A  = ZNA. 

More generally let N," ( m  EZ+) denote the subspace of Z consisting of all 
homogeneous polynomials of degree m in the invariants z, -xA  (2,) ( i  = 1,  . . . , 1).  Then 
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the mth power of I ,  may be written (cf Kostant 1975) 

II; =ZNI; .  

Definition. We call a U-module, M, a primary module of characteristic xA(A E H*) if 
there exists m E Zf such that 

II;M = (0 ) .  

The smallest such positive integer is called the characteristic length of the module M. 
Clearly characteristic modules are equivalent to primary modules of characteristic 

length 1. Note also that in finite dimensions, due to complete reducibility, primary 
modules and characteristic modules are equivalent (i.e. in finite dimensions one can 
only have primary modules of characteristic length 1). This is certainly not the case 
in infinite dimensional representations. 

Suppose M is a primary module of characteristic x,, and characteristic length m 2 1. 
We introduce the submodules 

v u  E I T - }  M,  ={w E Mluw =o,  r = 0 ,  . . . , m. 

Then we have the (strict) descending chain of submodules 

M = MO 2 MI 2 M2 2 * . . = M ,  = ( 0 )  

which we call the characteristic series of M. Now consider the factor modules Mi/M,+, 
( i  = 0 , .  . . , m - 1). Clearly we have 

z A ( M i / M i + l )  = ( 0 ) ~  
since if W E M ~  then U W E M , + ~  for all U E  IA. Thus each factor module M,/M,+, is a 
characteristic module with characteristic x,,. This shows that primary modules are 
natural generalisations of characteristic modules. 

Finally we assume that all modules possess a countable basis. If M is a U-module 
we say that the infinitesimal character x,, occurs in M if there exist submodules 
M 2 MI 3 M 2  such that the factor module M 1 / M 2  is a characteristic module with 
characteristic x,,. Clearly if M is a primary module of characteristic x,, then the only 
infinitesimal character occurring in M is x,,. 

3. Construction of projection operators 

Let V(A) be a finite dimensional irreducible U-module with highest weight A E A+, 
let T,, be the representation afforded by V ( h )  and let A l ,  . . . , A k  be the distinct weights 
occurring in V(A). Following Gould (1982) and Konstant (1975) let us consider the 
map 

a :  U+[End V(A)O U ]  

defined for x E L  by 

a( x)  = TA (x) 0 1 + 1 0  x, 

which we extend to an algebra homomorphism to all of U. Let z E 2 be an arbitrary 
(non-trivial) central element and put 

z' = -$a( z )  - T A  (2) @ 1 - 1 0 23. 
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Then, as shown in Gould (1982), 5 may be viewed as a d X d matrix ( d  =dim V(A)) 
with entries from U, 

Now let V be a (possibly infinite dimensional) characteristic U-module with 
characteristic xp(p  E H * )  and let 7~ be the representation afforded by V. Acting on 
the U-module V the entries of the matrix 2 become operators on V (i.e. elements 
of End V) whilst the matrix 2 itself may be viewed as an operator on the space 
V(A ) 0 V, namely 

?= - $ [ T A  8 r ( z ) -  T A ( # ? ) @  1 8  T ( Z ) ] .  

Following Gould (1982) and Kostant (1975) one knows that the matrix 
following polynomial identity on the space V 

satisfies the 

(3.1) 

where f z , i  denotes the polynomial function on H* defined by 

f Z,I .( p ) = - L  2 [ X p + A ,  ( z, - X h  ( z, - X p  ( z)l, /.LEH*. 

Clearly the numbers f z , i (p )  are the generalised eigenvalues of f on the space V(A)O V. 
As a result of the polynomial identity (3.1) one sees that the infinitesimal characters 

occurring in the space V(A)O V must be of the form xptA\, (see Kostant (1975) 
Theorem (5.3)). Note however that although the weights A I , .  . . , A k  are all distinct it 
is not necessarily true that the infinitesimal characters 

(3.2) 

are all distinct. Assume the number of distinct ones is n s k and that the weights 
A I ,  , . . , A k  are numbered so that the infinitesimal characters xptA,, i = 1, . . . , n, are all 
distinct. Let mi be the multiplicity of the infinitesimal character x ~ + ~ ,  ( i  = 1, . . . , n) 
occurring in the sequence (3.2). With this convention the polynomial identity (3.1) 
may be written 

X + + h , r .  . . 9 Xp tA i ,  

where 

Remark. The polynomial identity (3.3) may not be the minimum polynomial identity 
satisfied by 2 on the space V(A)O V. 

For ease of notation let us put Y = V(A)O V. As a result of equation (3.3) it easily 
follows that Y may be decomposed into a direct sum of primary submodules 

n 

i = l  
Y = Yj, 

where 
Y , = { y €  YIuy=O for all U E }. 

(3.4) 

A proof of this result for the case where V is a Harish-Chandra module is given in 
the paper by Kostant (1975, see Theorem 5.4). His method of proof is applicable to 
the general case and will not be reproduced here. 
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By definition each Y, occurring in (3.4) satisfies 

IF!+A! y, = (01, 

so that each Y, is a primary module of characteristic x,+*,. If n, denotes characteristic 
length of Y, then we must have n, s m,. Also one sees that if z is such that the numbers 
x ~ + ~ , (  z )  ( i  = 1, . . , , n )  are all distinct then the minimum polynomial identity satisfied 
by z' over Y is 

n 

lJ ( i -aJf l ,=O. 
, = 1  

We see from this that a knowledge of the minimum polynomial identity satisfied by 2 
on Y is equivalent to a knowledge of the characteristic lengths of the primary modules 
y,. 

From now on we assume that z E 2 is such that the numbers xP+,,, ( z ) ,  i = 1, . . . , n, 
are all distinct. If zl, . , . , zl E 2 are algebraically independent then such a z may be 
chosen from the linear span of zl,. . . , zI. Note that the primary modules Y, occurring 
in the decomposition (3.4) are given by 

YJ = { y  E yl(z - X p + A ,  (2)) m'y = 01. (3.5) 

This follows from the definition of the Y, and the fact that 

( - X , + A ,  (2)) E IP!tA, .  

Equivalently the submodules Y, may be written 

Y,  = {y E Yl ( i  - a r ) m l y  = O}, (3.6) 

(cf Kostant 1975). Thus Y, is the unique maximal submodule of Y on which (2 -a , )  
is nilpotent. 

It is our aim now to apply the polynomial identity (3.3) to construct projection 
operators which project the tensor product space Y = V ( h ) O  V onto the primary 
submodules Y,. Such projectors are natural generalisations of the projection operators 
appearing in Bracken and Green (1971) (see also Gould 1980). 

Following the classical theory of matrices (Gantmacher 1959) we begin by introduc- 
ing the operators 

Q, = q l ( i )  (3.7) 
where q, ( x )  denotes the polynomial 

m 
X - a ,  ' 

= j - 1  fi (--) aj-aj . 
# i  

(3.8) 

Note, due to our assumptions about z, the numbers ai ( i  = 1, . . . , n )  are all distinct 
so that Qi is well defined. The operators (3.71, in the case where V is finite dimensional, 
would in themselves serve as projection operators. However, in infinite dimensions 
we need to consider the additional operators 

Hi = hi( 2) 

where h i ( x )  denotes the polynomial 
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where the coefficients are given by 

and where f ( I ) (  x )  denotes the jth derivative f (  x) with f 

operators 

x) = f (x). 
It is our aim to show that the required projection operators are given by the 

PI = HiQ,. (3.10) 

As a consequence of the polynomial identity (3.3) one may use a simple induction 
argument to establish the following result. 

Lemma 1. 
(a) Let f ( x )  be an arbitrary polynomial. We then have 

where 

f ( ’ ) (a , )  = f ( ’ ) ( x ) l x = a , .  

(b) Let p , ( x )  = h , ( x ) q , ( x )  where q ( x )  and h,(x) denote the polynomials (3.8) and 
(3.9) respectively. Then 

p:”(a,) = o  f o r m , >  m a  1. 

Our main result is 

Theorem 1. 

property 
(a) The operators PI, as defined by equations (3.7)-(3.10), satisfy the projection 

PIPI = 49/. 
(b) On the space Y = V(A)O V we have the following resolution of the identity 

I = 1 Pi. 
i = l  

(3.11) 

(c) The primary submodules Y, occurring in the decomposition (3.4) are given by 

Y, = P l y  

Proof 
(a) From Lemma l (a )  one has (putting 1 = m, and f ( x )  = p i ( x ) )  

From Lemma 1 (b) we have p : ’ ) (  a,) = 0 for j 3 1, whence 

P,Ql = p l ( a I ) Q ,  = 0,. 
But PI = H,Q, whence 

Pf = P,H,Q, = H,P,Q, = H,Q, = PI. 
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Using the polynomial identity (3.3) it is clear that PrP,=O for i Z j .  This completes 
the proof of part (a). 

(b) Set E = I-Z:=l PI. Using part (a) above one easily sees that E is a projection 
(i.e. E'= E )  which satisfies PIE = 0 ( i  = 1 , .  . . , n). Now put W = EY. Then W is a 
submodule of Y satisfying 

P,W=(O) i = 1,.  . . , n. (3.12) 

Now put W, = (,? - a,) W E  W and consider the factor module 

MI = W/ W,. 

By definition (?-al)Mr = ( O ) ,  which implies that PrM, =MI. On the other hand, 
equation (3.12) implies that P,Mr = (0) which can only occur if MI = (0) whence we 
necessarily have 

w = ( 2 -  a,) w i = 1 , .  . . , n. 
By repeated application of this result we must have 

w = (i- a,)"1W i =  1 , .  . . , n 

whence 
n 

w =  n (2-a r ) "W=(0) ,  
r = l  

where we have used the polynomial identity (3.3). Thus we have established that 
EY = W = (0) which proves part (b). 

(c) Part (c) is an easy consequence of the resolution (3.4) and the definition of 
the projection operators PI. 

Note that Theorem l (a ,  b) was proved independently of the decomposition (3.4), 
so we may use this method of proof to give an independent derivation of (3.4). 

In constructing the projection operators PI we made use of the polynomial identity 
(3.3) which can be obtained solely from a knowledge of the infinitesimal character xw 
of the characteristic module V. However, one may simplify the construction of the PI 
if one knows the minimum polynomial identity 

n n ( i -aJ f l z  = 0, n, m,, 
, = 1  

(see remarks following equation (3.4)) where n, is the characteristic length of the 
primary submodule Y,. In such a case the projectors PI (acting on Y = V ( h ) O  V) 
reduce to a simpler form given by the same construction as before but with m, replaced 
by n,. Clearly such a construction would involve more information than simply the 
infinitesimal character of the space V. In cases where such information is not available 
one may work with the projection operators (3.10). 

For example, suppose V =  V ( p )  were a finite dimensional irreducible repre- 
sentation with highest weight p E A'. Then in this case (using the same notation as 
before)? satisfies the identity 

n 

( i - a i ) = O .  
i = l  

(3.13) 
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(In fact only factors corresponding to p + h i  E A’ need to be retained in this identity.) 
Our required projection operators in this case are 

(3.14a, b )  

Substituting equations (3.13) and (3.14) into (3.10) one sees that the projection 
operators defined by (3.10) reduce to the form ( 3 . 1 4 ~ ) .  

We conclude this section by obtaining a generalisation of the identity resolution 
(3.11). Suppose f ( x )  is an arbitrary function (expandable in a power series). Then 
Lemma l (a )  implies (putting 1 = mi) 

whence, using P; = HiQ; = QiHi, 

Hence as a generalisation of the spectral resolution (3.11) we obtain 

(3.15) 

where f ( x )  is an arbitrary function. In particular we may define an inverse of the 
operator 2 by setting 

which is well defined provided a, # 0 ( i  = 1, .  . . , n ) .  
The nicest case occurs when the infinitesimal characters xPcA,  ( i  = 1 , .  . . , k) are all 

distinct (i.e. n = k). In such a case the projection operators P; reduce to the simpler form 

and (3.15) reduces to 
k 

f(2) = 1 f (a i )P i .  
i = l  

In this case the tensor product representation Y = V(A)O V decomposes into a direct 
sum of characteristic submodules 

k 
Y = @  Y, 

i =  I 

where 

(3.16) 

is the unique maximal submodule of y admitting the infinitesimal character x ~ + ~ ~ .  
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4. Shift tensors 

Following our previous notation let V( A )  be a finite dimensional irreducible representa- 
tion of L and let A I , .  . . , A k  be the distinct weights occurring in V(A). Choose an 
orthonormal basis e l , .  . . , ed ( d  =dim V(A)) for V(A). With respect to this basis we 
define an irreducible tensor operator of rank A as a collection of operators {Ta}2=l 
which transform according to 

d 

p=1 
EX, Tal = TorA (x )Ba,  x E L. 

Associated with the tensor operator T, is its domain V and range W i.e. 

Tau€ W fora l luEV;  a = l ,  . . . ,  d, 

where V and W are (possibly infinite dimensional) U-modules. This is equivalent to 
investigating the action of an intertwining operator 

T :  V(A)O V-, W (4.1) 
.rrw(x)T= T(.rr,(x)O l + . r r " ( X ) ) ,  X E L  

where rV (resp. rw) is the representation afforded by V (resp. W ) .  In other words 

TEHom,( V(A)O V, W) 

is an element of the set of all operators from V(A)O V to W commuting with the 
action of L (and hence U). We recover our usual component form definition of a 
tensor operator by setting 

a = 1 , .  * . , d, Tau= T(e,Ou),  U €  v. 
For notational convenience we follow the notation of § 3 and denote the tensor 

product space V(A)O V simply by Y. Without loss of generality we assume that 
W = TY i.e. that the mapping (4.1) is onto. In such a case the isomorphism theorem 
guarantees that W is isomorphic to the factor module Y/ker T, where ker T is the 
submodule of Y given by 

ker T = { y €  YITy=O}. 

Note that because T commutes with the L action one sees that ker T i s  a U-submodule 
of Y. Thus we have reduced our problem to investigating the structure of the spaces 
Hom,( Y, Y/ Yl), where Y1 is an arbitrary submodule of Y. 

We wish now to apply our previous results to investigate the action of a tensor 
operator T, on an arbitrary characteristic representation V with characteristic x,, 
p E H*. Following the notation of § 3 let n( G k )  be the number of distinct infinitesimal 
characters occurring in the set { x + + ~ , } : = ~  and suppose the A ,  are ordered so that the 
infinitesimal characters x , + ~ , ,  . . . , x,++~, are distinct. Finally choose z E 2 such that 
the numbers X , + ~ , ( Z ) ,  . . . ,X,+~,(Z) are all distinct. 

Our previous analysis shows that on the space Y = V(A)O V we have the following 
resolution of the identity 

where the projectors Pi are given by equation (3.10). This implies a decomposition 
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of the space Y into a direct sum of primary submodules (cf equation (3.4)) 
n 

Y = $  Yi. 
i = l  

Hence we may resolve the intertwining operator T into components 
n 

T =  T[ i]  
i = l  

(4.2) 

where T [  i ]  = TP,. Then, by definition T[ i ]  Y = TP, Y = TY,. Thus since T intertwines 
the action of U, this implies that W = TY decomposes into a direct sum of submodules 

n 

W = $  w, 
, = I  

where W, = TY, is a primary submodule of W with characteristic x ~ + ~ , .  Thus T[i]  is 
an intertwining operator from Y to the primary module W,. 

In component form this implies that the tensor operator T, may be resolved into 
generalised shift components 

where T[i] ,  is given by 

T[i],u = TP,(e, 0 U), a = 1 , .  . . , d, U €  v. 
Since T[i]= TP, is an intertwining operator we note that {T[i],}d,=l also constitutes 
an irreducible tensor operator of rank A (with domain V and range W,).  

Thus we have shown that a tensor operator Tu when acting on a characteristic 
module V of characteristic xp may be resolved into generalised shift components T[i] ,  
where T[i], takes V to a primary representation of characteristic x*+*\,. Thus T[i] ,  
shifts characteristics of representations from x p  to x@+*,. In finite dimensions this is 
equivalent to shifting the highest weight. 

Note that the projection operator PI itself is an intertwining operator P, : Y + Y, 
and hence determines a tensor operator { W[i],} defined by 

W[i],v=P,(e,Ov), a = l ,  ..., d,  U €  v. 
The tensor operators { W[i],}d,=, are generalisations of the unit Wigner operators 
considered by Biedenharn and Louck (1972) and Louck and Biederharn (1970). 

Following the infinitesimal techniques introduced in Gould (1980, 1981) (see also 
Bracken and Green 1971, Green 1971) we note that given an irreducible tensor 
operator T, acting on the characteristic representation V one may construct the 
generalised shift components T[  i l0  using operators in the universal enveloping algebra 
U. This follows from the observation (see Gould 1982) that 5 (notation as in 9 3) 
may be viewed as a d X d matrix with entries imp E U (a ,  p = 1 , .  , . , d =dim V(A)). 
As an illustration consider the case where z = C, is the universal Casimir element. In 
this case we may write 

= -&[a( CLl- T A (  CL)@ 1 - 1 @ c,] 

(4.4) 
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where {x , }  is a basis of L and {xr}  is the corresponding dual basis with respect to  the 
Killing form. In this case we have 

[ e L l a p  = -c n A ( x ' ) a p x r  a, p = 1 , .  . . , d 
, 

where T ~ ( x ) ( x  E L )  is the matrix representing x in the basis {e,} of V(A). This is the 
matrix considered by Bracken and Green (1971) and Green (1971) for the classical 
Lie groups. 

The advantage of this procedure is that the d X d matrix 2 is defined in a representa- 
tion-independent way as a matrix over the universal enveloping algebra U. Polynomials 
in the matrix 2 may then be defined recursively according to 

d d 
[ f m I m p  = iay[im-'],p = [Z"-'],,iyp E U 

y = l  y = l  

Acting on the representation V we may thus regard the operator 2 as a d x d  
matrix with entries E nv( U ) .  Then, since the projector PI (see equations (3.8)- 
(3.10)) is a polynomial in the matrix 2 we may also regard Pi as a d X d matrix with 
entries [PIlap E nv( U ) .  With this convention the generalised shift components T [ i ] ,  
of the tensor operator T, are given in component form explicitly by 

The nicest case occurs when the infinitesimal characters xr+,,, ( i  = 1 , .  . . , k) are 
all distinct (i.e. n = k ) .  In this case the projection operators are given simply by 
(notation as in 0 3) 

and the space Y = V( A )  0 V decomposes into a direct sum of characteristic submodules 
(see equation (3.16)). The shift component T[iIa of the tensor operator T, in this 
case takes the characteristic module V to the characteristic module W, = TY, = TPIY 
(notation as before) with characteristic x,+~, i.e. T[i ]*  shifts to the infinitesimal 
character from xr to xIUtA,. 

In applications one frequently has to deal with contragredient tensor operators 
(with domain V and range 6') which transform according to 

X E  L. 

In this case we follow the same procedure as before except that we consider the tensor 
product space V*(A)@V where V*(A) is contragredient to V(A). (Note that the 
weights occurring in V*(A) are the negative of those occurring in V(A) from which 
it follows that the infinitesimal characters occurring in the space V*( A )  0 V are of the 
form xIU-,,(i = 1,. . . , k ) ) .  An important example where a tensor operator and its 
contragredient appear will be considered in the following section. 
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5. Example: vector operators for gl(n, C) 

We consider the case where L is the Lie algebra of gl(n, C) which is nz dimensional 
with basis a,( i, j = 1, . . . , n) satisfying the commutation relations 

[ai,, aktl = 6k,ai/ - a r l a k y  

As a particular case of our previous results we aim to show that the work of Green 
( 1971) extends also to infinite dimensional representations. We shall also briefly discuss 
the application of these methods to determining the matrix elements of the U ( p , q )  
generators in the discrete series of unitary representations. Further work along these 
lines is now in progress. 

Note that gl( n, C) is not semi-simple but is reductive and all of our previous results 
apply. We have in fact the following decomposition of ideals 

g1( n, C) = sl( n, C) 0 CI,, 

where sl(n, C) is a semi-simple Lie algebra and 

is an invariant (i.e. commutes with all the gl(n, C) generators). Since we only consider 
representations of g1( n, C) on which ZI acts as a scalar, one sees that the representation 
theory of g1( n, C) and sl( n, C) are equivalent. 

Throughout we denote the Lie algebra gl(n, C) simply by L. Now we take our 
Cartan subalgebra Hc L to be the n-dimensional sub-space of L spanned by the 
diagonal generators ut,. If A E H* is a weight of L we identify A with the n-tuple 
A = ( A I , .  . . , A,,) where A,  = A(u,[). 

We take as our set of positive roots @+ of L, the weights A I  -A,  ( i  < j )  where AI  
is the weight with 1 in the ith position and zeros elsewhere. In this case 6 (the half-sum 
of the positive roots) is given by 

8=; c ( A i - A j ) = $  (n+ l -2 r )AP  
i<j r = l  

The Weyl group of course is the symmetric group S, (i.e. the group of permutations 
on n objects). 

The centre Z of the universal enveloping algebra U of L is generated by the 
algebraically independent Gel'fand invariants 

where we define 

ay  = a , , a y l  = f u;-'akr 
k = l  k = l  

Note that the second-order invariant Z2 determines the $-invariant polynomial 
function defined by 

n 

xA (I,) = ( A ,  A + 28) = 1 A,(  A, + n + 1 - 2 r )  
r =  1 
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where we define 
n 

( A > P ) =  C Arpn A,p E H*. 
r = 1  

In the case where nA = v* is the fundamental contragredient vector representation of 
L the matrix 6, in equation (4.4) reduces to  

n 

I.] = 1 
eL=- v*(a,Ja,, = c E,,a,, 

I,, = 1 

where E,, is a typical elementary matrix with 1 in the (i, j )  position and zeros elsewhere. 
This is the matrix considered by Green (1971) for GL(n) .  Following the notation of 
Green (1971) we denote the matrix eL by a. 

Note that the weights occurring in the U-module V* (where V* is the representa- 
tion space of n*) are of the form - A , ( i  = 1, .  . . , n )  each occurring with multiplicity 1. 

Now let W be any characteristic U-module admitting an infinitesimal character 
x,, p EH*. We further assume that 

(p+- ts ,a )#O for all a E @+, (5.1) 

(this assumption is always satisfied when p is dominant integral). It is customary to 
call weights p satisfying equation (5.1) regular. With this condition it is clear that the 
infinitesimal characters ,yr-*,( i = 1, . . . , n) (and xr+*,, i = 1, . . . , n) are all distinct. In 
fact we have 

Xr-a ,  ( J 2 )  - x , - a ,  ( 1 2 )  
= ( F  - A,, p - A l  + 2 6 )  - (/A - A , ,  p - A ,  + 2 6 )  

=2(A1-A, ,  F + S )  = x , + s , ( ~ 2 ) - x . + ~ , ( ~ 2 ) .  

Assuming (5.1) is satisfied this shows that 

x r - a /  ( 1 2 )  f X e r - - a ,  ( I * ) ,  

satisfies the polynomial identity 

x,+s/ ( 1 2 )  f XPTA, ( 1 2 )  for i f j. 

From the remarks of 3 3 (see also Gould 1982) it follows that on the space W, a 

where a, = pr + n - r. It is useful in this case to  regard the roots a, as operators lying 
in an algebraic extension of the centre Z (Gould 1982). The roots a, take constant 
values x ,  (a , )  = pr + n - r on a representation admitting x,  as an infinitesimal character, 

The  projection operators 

p,=l-I (3) 
1 Z r  a,-a1 

project the tensor product space V*O W onto a characteristic module W, = 
P,( V*O W )  with infinitesimal character x , - ~ , .  Note that the projectors P, are well 
defined, since the a, are all distinct (in view of equation (5.1)), and satisfy 

n 
I = C  P" P,P] = S,P,. 

,= 1 
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If {&};= ,  is a contragradient vector operator ?f L, i.e. $ satisfies [aij, &I-= -&Gj, 
then Gi may be resolved into (shift) components $ [ r l i  = ($P, ) ,  where each $ [ r ]  is, an 
intertwining operator from V*O W onto Wr (or at least a quotient of Wr).  Thus $[rIi 
shifts the infinitesimal character of W from xp to x ~ - ~ , .  

Similarly we may consider the adjoint matrix a' of a defined by a'ij = -aj,. In this 
case Ci satisfies the polynomial identity 

n fl (a ' -ar ' , )=O,  
r = l  

where 2, = n - 1 - a, Our required projection operators in this case are 

which project the tensor product space V O  W (where V is the representation sp_ace 
f?r the fundamental vector representation) onto the characteristic submodule Wr = 
Pr( V O  W) with infinitesimal character x & + ~ , .  As for the Pr one sees that the projection 
operators Fr are well defined and satisfy the relations 

n .- - 
I = C  ii, Pipi = S$j. 

r = l  

If [$i]7=1 is a vector operator of L, '.er $ satisfies [a,, $J = 8,&, then may be 
resolved into shift components I,b[rI1 = ($P, ) ,  where each $[r], shifts the infinitesimal 
character of W from xr to x ~ + ~ , .  

Consider for example the subgroup imbedding GL(n + 1) 3 GL(n). Let Q be an 
(irreducible) characteristic representation of GL( n + 1) which admits an infinitesimal 
character & (where p is a weight of GL(n + 1)). Suppose V decomposes into a direct 
sum of irreducible characteristic GL( n )  -submodules; 

e=@ v,, (5.2) 
Y 

where V ,  is irreducible and admits the infinitesimal character x,,, v E H*. Suppose 
further that the infinitesimal characters xY occurring in (5 .2)  all occur with unit 
multiplicity. 

Now the GL(n + 1) generators +, = u ~ , , , + ~  ( i  = 1,. . . , n) constitute a vector operator 
of GL(n) .  If $ [ r ] !  denote the shift components of 4, our analysis shows that 

I,b[rlVO V, = Vu+s,, (5.3) 

where it is understood that the RHS of (5 .3)  is zero if V u + s ,  does not occur in the 
decomposition (5.2). Note also that if we relax the assumption that V, is irreducible, 
to V,, is completely reducible, then (5.3) relaxes to +[r]V@ V, c VutA,.  

Equation (5.3) is to be understood in the sense that if t ' ~  V,, then 

Conversely, given t' E V,,,, there exist vectors ui E Vu( i = 1 , .  . . , n )  such that 
n 

t' = c $ [ r ] , u , .  
I - !  
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Similarly the GL(n + 1) ge_nerato_rs Gj = ( i  = 1 , .  . . , n) constitute a contra- 
gradient vector operator. If + [ r ]  = +P, denote the shift components of $ we have 

$[r]V*O v, = V“+ 

Since the infinitesimal character of a representation is uniquely determined by the 
eigenvalues of the Gel’fand invariants (and vice versa) our work shows that, in the 
case considered above, the generators (and u , , + ~ , ~ )  shift the eigenvalues of the 
Gel’fand invariants in exact analogy with the finite dimensional case. This is precisely 
the situation which occurs in the discrete series of unitary representations of U(p, q + 1) 
( n  = p + q )  which decompose into unitary characteristic irreducible representations of 
U(p,q). In fact a Gel’fand-Zetlin type basis exists for these representations (see 
Chakrabarti (1968) which are labelled by the eigenvalues of the Gel’fand invariants 
for each of the subgroups occurring in the chain 

Our analysis shows that the generators of U(p, 4 + 1) shift the labels of the Gel’fand 
states (or equivalently the eigenvalues of the Gel’fand invariants for each subgroup 
occurring in the chain (5.4)) in exact analogy with the finite dimensional case. We 
may then proceed to evaluate the matrix elements of the U(p, q + 1) generators directly 
in this basis, using the methods of Gould (1980,1981). This approach offers an 
alternative to the usual method whereby the matrix elements for the discrete series 
of unitary representations of U(p, q )  are obtained from the compact case U( n = p + 4) 
using the methods of analytic continuation. A similar analysis may be applied to the 
pseudo-orthogonal groups O(p, q ) .  

It would be of interest to extend these results to the action of irreducible tensor 
operators on an irreducible Harish-Chandra module V (see Dixmier 1977). In this 
case Kostant (1978) shows that the space V(A)O V admits a finite composition series 
(see Curtis and Reiner 1962) and as such decomposes uniquely into a finite direct sum 
of indecomposable submodules (Krull-Schmidt Theorem-see Cur$ and Reiner 
(1962)). In the case where V is a submodule of a reprpentation V rea1i:ed on a 
Hilbert space and T, is a tensor operator with domain V and range W c V, then a 
suitable generalisation of the Wigner-Eckart theorem may be obtained. 

We hope to look at the above mentioned problems in a future publication. 
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